.

Физика. Электромагнитная индукция.

Физика. Электромагнитная индукция.

Johny

This interactive crossword puzzle requires JavaScript and any recent web browser, including Windows Internet Explorer, Mozilla Firefox, Google Chrome, or Apple Safari. If you have disabled web page scripting, please re-enable it and refresh the page. If this web page is saved on your computer, you may need to click the yellow Information Bar at the top or bottom of the page to allow the puzzle to load.

четверг, 26 апреля 2012 г.

Звук и Звуковая Информация.

Звук и Звуковая информация.


Так что же такое звук?
Звук, в широком смысле — упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; в узком смысле — субъективное восприятие этих колебаний специальными органами чувств животных или человека
Существуют различные форматы звуковых файлов таких как:

AAC

Формат AAC (Advanced Audio Coding) представляет еще один из числа появившихся сравнительно недавно форматов кодирования звуковой информации, в которой осуществляется сжатие с потерями. На сегодняшний момент AAC представляет собой лучшую систему сжатия высококачественного звука. Это последний из стандартов MPEG-2. Перевести AAC можно так - "продвинутое аудио кодирование", название, которое появилось из-за исключительно высокого качества звучания и очень сильной степени сжатия.
На данный момент различают четыре разновидности формата AAC:
  • HomeboyAAC
  • AT&T a2bAAC
  • Liquifier PRO AAC
  • Astrid/Quartex AAC
По всем объективным параметрам последние две модификации AAC превосходят как MP3, так и VQF. Все 4 этих разновидности несовместимы между собой и используют свои собственные программы кодирования-воспроизведения. 

MP3

В 1988 году Международной организацией стандартов ISO (International Standards Organization) был сформирован комитет MPEG (Moving Pictures Expert Group, группа экспертов в области движущихся изображений), основной задачей которого является разработка стандартов кодирования подвижных изображений, звука и их комбинации.
В настоящее время существует три стандарта хранения видеоданных: MPEG-1, MPEG-2 и MPEG-4. В рамках первых двух форматов существуют также форматы хранения звуковой информации - Layer-1, Layer-2 и Layer-3. Эти три звуковых формата определены для MPEG-1 и незначительными расширениями используются в MPEG-2. Все три формата похожи друг на друга, но используют различные уровни компромисса между сжатием и сложностью. Уровень Layer-1 - наиболее простой, не требует значительных затрат на сжатие, но и дает незначительную степень сжатия. Уровень Layer-3 - наиболее трудоемкий и обеспечивает самое лучшее сжатие. В последнне время, как уже отвечалось, этот формат завоевал огромную популярность. Его часто называют MP3 . Такое название связано с расширением звуковых файлов, хранящихся в этом формате.
Основанная идея, на которой основаны все методики сжатия аудио сигнала с потерями, - пренебрежение тонкими деталями звучания оригинала, лежащие вне пределов которые воспринимает человеческое ухо. Здесь можно выделить несколько моментов. Уровень шума. Звуковое сжатие базируется на простом факте - если человек находиться рядом с громко воющей сиреной, то вряд ли он услышит разговор стоящих неподалеку людей. Причем это происходит не оттого, что человек обращает большое внимание на громкий звук, а в большей степени от того, что человеческое ухо фактически теряет звуки, лежащие в том же диапазоне частот, что и более громкий звук. Этот эффект носит название маскирующего, он изменяется с различием в громкости и частоте звука. Вторым моментом является деление полосы звуковых частот на подполосы, каждая из которых далее обрабатывается отдельно. Программа кодирования выделяет самые громкие звуки в каждой полосе и использует эту информацию для определения приемлемого уровня шума для этой полосы. Лучшие программы кодирования учитывают также влияние соседних полос. Очень громкий звук в одной полосе может повлиять на маскирующий эффект и на близлежащие полосы. Еще одним моментом кодирования является использование психоакустической модели, опирающейся на особенности человеческого восприятия звука. Сжатие с использованием этой модели основано на удалении заведомо неслышимых частот с более тщательным сохранением звуков, хорошо различаемых человеческим ухом. К сожалению здесь не может быть точных математических формул.
А так же существуют другие форматы звуковых файлов (менее распространённые):
  • WMA

  • PAC 

  • VQF

  • asf

Звуковая информация
Рисунок 1Зависимость громкости и высоты тона звука
 от интенсивности и частоты звуковой волны
 .
Звуковая информация , как я уже писал выше звук представляет собой распространяющуюся в воздухе, воде или другой среде волну с непрерывно меняющейся интенсивностью и частотой.
Человек воспринимает звуковые волны (колебания воздуха) с помощью слуха в форме звука различных громкости и тона. Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука(рис.1)



.Человеческое ухо воспринимает звук с частотой от 20 колебаний в секунду (низкий звук) до 20 000 колебаний в секунду (высокий звук).
Человек может воспринимать звук в огромном диапазоне интенсивностей, в котором максимальная интенсивность больше минимальной в 1014 раз (в сто тысяч миллиардов раз). Для измерения громкости звука применяется специальная единица "Децибел" (дбл)(табл.1)
Уменьшение или увеличение громкости звука на 10 дбл соответствует уменьшению или увеличению интенсивности звука в 10 раз.
 Таблица 1. Громкость звука.

ЗвукГромкость в децибелах
Нижний предел чувствительности человеческого уха0
Шорох листьев10
Разговор60
Гудок автомобиля90
Реактивный двигатель120
Болевой порог140


Временная дискретизация звука.
 Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.
Рисунок 2.         Временная дискретизация звука
Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек"(рис.2)










Частота дискретизации.
Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за I секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую диалогового сигнала.
Частота дискретизации звука - это количество измерений громкости звука за одну секунду.
Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду.
Глубина кодирования звука. 
Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука.
Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.
Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2I. Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:
N = 2I = 216 = 65 536.
В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.
Качество оцифрованного звука. 
Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").
Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду й умножить на 2 (стереозвук):
16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.
Звуковые редакторы.
Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).
Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3.
При сохранении звука в форматах со сжатием отбрасываются "избыточные" для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном виде).
И напоследок :
Демонстрация стоячих волн звука с помощью Трубы Рубенса.